Partition and Cohen–Macaulay extenders

نویسندگان

چکیده

If a pure simplicial complex is partitionable, then its h-vector has combinatorial interpretation in terms of any partitioning the complex. Given non-partitionable Δ, we construct Γ⊇Δ same dimension such that both Γ and relative (Γ,Δ) are partitionable. This allows us to rewrite as difference two h-vectors partitionable complexes, giving an analogous By contrast, for given Δ it not always possible find Cohen–Macaulay. We characterize when this possible, show construction case remarkably straightforward. end with note on similar notion shellability connection Simon’s conjecture extendable uniform matroids.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular cardinals and strong extenders

We investigate the circumstances under which there exist a singular cardinal μ and a short (κ, μ)-extender E witnessing “κ is μ-strong”, such that μ is singular in Ult(V,E).

متن کامل

Prikry on Extenders, Revisited

We present a modification to the Prikry on Extenders forcing notion allowing the blow up of the power set of a large cardinal, change its cofinality to ω without adding bounded subsets, working directly from arbitrary extender (e.g., n-huge extender). Using this forcing, starting from a superstrong cardinal κ, we construct a model in which the added Prikry sequences are a scale in the normal Pr...

متن کامل

Short Extenders Forcings II

A model with otp(pcf(a)) = ω1 + 1 is constructed, for countable set a of regular cardinals. 1 Preliminary Settings Let 〈κα | α < ω1〉 be an an increasing continuous sequence of singular cardinals of cofinality ω so that for each α < ω1, if α = 0 or α is a successor ordinal, then κα is a limit of an increasing sequence 〈κα,n | n < ω〉 of cardinals such that (1) κα,n is strong up to a 2-Mahlo cardi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2022

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2021.103488